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ABSTRACT
To support different application scenarios, big data frameworks usu-
ally provide a large number of performance-related configuration
parameters. Online auto-tuning these parameters based on deep
reinforcement learning to achieve a better performance has shown
their advantages over search-based and machine learning-based
approaches. Unfortunately, the time consumption during the online
tuning phase of conventional DRL-based methods is still heavy,
especially for big data applications. Therefore, in this paper, we
propose DeepCAT, a cost-efficient deep reinforcement learning-
based approach to achieve online configuration auto-tuning for
big data frameworks. To reduce the total online tuning cost: 1)
DeepCAT utilizes the TD3 algorithm instead of DDPG to alleviate
value overestimation; 2) DeepCAT modifies the conventional expe-
rience replay to fully utilize the rare but valuable transitions via a
novel reward-driven prioritized experience replay mechanism; 3)
DeepCAT designs a Twin-Q Optimizer to estimate the execution
time of each action without the costly configuration evaluation and
optimize the sub-optimal ones to achieve a low-cost exploration-
exploitation trade off. Experimental results based on a local 3-node
Spark cluster and HiBench benchmark applications show that Deep-
CAT is able to speed up the best execution time by a factor of 1.45×
and 1.65× on average respectively over CDBTune and OtterTune,
while consuming up to 50.08% and 53.39% less total tuning time.

KEYWORDS
Performance Optimization; Online Configuration Tuning; Big Data
Framework; Deep Reinforcement Learning

ACM Reference Format:
Hui Dou, Yilun Wang, Yiwen Zhang, and Pengfei Chen. 2022. DeepCAT: A
Cost-Efficient Online Configuration Auto-Tuning Approach for Big Data
Frameworks. In 51st International Conference on Parallel Processing (ICPP

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’22, August 29-September 1, 2022, Bordeaux, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9733-9/22/08. . . $15.00
https://doi.org/10.1145/3545008.3545018

’22), August 29-September 1, 2022, Bordeaux, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3545008.3545018

1 INTRODUCTION
In order to adapt to various application scenarios, big data frame-
works such as HDFS, Spark and Flink usually provide a large num-
ber of performance-related parameters for developers. Inappropri-
ate configuration of these parametersmay cause performance degra-
dation [13] and even non-functional faults[14]. Since manually con-
figuration tuning is both time-consuming and labor-intensive, how
to automatically tune configuration parameters for big data frame-
works have recently been a hot topic[2, 17, 22, 29, 32] in academia
as well as industry. However, configuration tuning is not an once for
all job because the performance of a big data framework under the
same configuration is highly related to the workload characteristics
(e.g., workload type and input data size) and its underlying hard-
ware infrastructures[17, 24], which may frequently change with
time in practice. Hence, there is an urgent requirement for an online
configuration auto-tuning approach for big data frameworks.

Broadly speaking, there are mainly three challenges to auto-tune
configuration parameters in a short time: 1)Complex relation-
ship between parameters and performance: Considering the
complex implementation of big data frameworks, the relationship
between performance and configuration parameters is very diffi-
cult to figure out. Besides, the relationship is highly related to the
time-varying workload characteristics and hardware environment,
which further increases its complexity. 2)Heavy configuration
evaluation cost: Due to the lack of reliable performance simula-
tors, the time consumed on evaluating the performance of the big
data framework under a certain configuration is typically long. We
usually have to execute a benchmark application on a real big data
cluster for several times, which will take several to tens of minutes
for each evaluation. 3)High dimensional configuration space:
Each big data framework owns a large number of performance-
related parameters to tune. These parameters can be numeric or
categorical and together construct a high dimensional candidate
configuration space. This space will further expand when we try to
optimize a big data pipeline composed of several different frame-
works.

Recently, deep reinforcement learning (DRL)-based methods [10,
18, 30] have shown their advantages in addressing above challenges
over the search-based[16, 32] and machine learning-based[3, 26, 29]
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approaches. Specifically, search-based approaches such as BestCon-
fig [32] explore the candidate configuration space according to a
certain heuristic in an online manner. Since they cannot effectively
exploit historical experiences, these approaches usually need a large
number of time-consuming configuration evaluation and restart
from scratch whenever a new tuning request comes. On the other
hand, machine learning-based approaches such as OtterTune[26]
first offline model the relationship between parameters and perfor-
mance and then execute online configuration tuning based on this
learned model. However, these approaches need a large number of
high-quality samples to train an accurate performance prediction
model and what is worse, model re-training is usually necessary
whenever workload or hardware change happens due to the poor
adaptability of conventional machine learning algorithms. Different
from above methods, DRL-based approaches such as CDBTune[30]
first adopt an efficient trial-and-error strategy to offline train a
DRL model and then fine-tune this standard model with several
sequential online tuning steps to adapt to the real scenario. As a
result, these approaches can recommend a good configuration for
each newly arrived tuning request with only several times of the
costly configuration evaluation.

Unfortunately, although DRL-based approaches are able to avoid
the expensive offline model re-training due to their good adaptabil-
ity, we insist that under big data application scenarios, the time
consumed by their online tuning steps should not be ignored. For
instance, in our experiments conducted on a local Spark cluster
with the TeraSort benchmark application in HiBench and a modest
input data size (3.2GB), the configuration evaluation time during
the 5 online tuning steps of CDBTune vary from 37.5 seconds to as
many as 109 seconds, leading to a remarkable total time consump-
tion for an online configuration auto-tuning approach. In fact, there
are two major limitations of prior DRL-based approaches when
applied to online auto-tune big data frameworks:
Lack of an effective experience replaymechanism.Challenges
discussed above means that for a big data framework, the close-
to-optimal configurations are far fewer than sub-optimal ones and
scattered throughout the high-dimensional configuration space. In
order to fully utilize these sparse but valuable experiences, it is
necessary to replay corresponding transitions. However, the con-
ventional experience replay mechanism is not able to recognize
the important experiences out since it samples transitions from the
memory pool in a totally random way. Although a prioritized expe-
rience replay mechanism (PER)[25] is recently proposed to enhance
DRL in scenarios with sparse rewards, unfortunately, PER aims to
gain enough information from environment, which is infeasible
and unnecessary for an online configuration auto-tuning problem.
The lack of an effective experience replay mechanism results in a
slow convergence rate of the offline training phase.
Neglecting the cost of each online tuning step. When a new
configuration tuning request is arrived, DRL-based approaches
need to fine-tune the offline trained model with several sequential
online tuning steps to adapt to the real user environment. Each
step will launch a costly configuration evaluation task and forms a
remarkable cumulative total online tuning time. Nevertheless, prior
DRL-based approaches only target on how to eventually find a good
configuration, while totally overlooking the time consumption of
each online tuning step. In addition to the quality of recommended

configuration, an online configuration auto-tuning approach should
pay more attention to its total tuning cost.

Towards these limitations of prior DRL-based methods, we pro-
pose a cost-efficient deep reinforcement learning-based online con-
figuration auto-tuning approach named DeepCAT for big data
frameworks in this paper. Overall, DeepCAT is able to find a better
configuration consuming less total tuning time with the following
two novel techniques: 1)Reward-driven prioritized experience
replay mechanism. Instead of the conventional deep determin-
istic policy gradient algorithm (DDPG)[19], DeepCAT utilizes the
twin delayed deep deterministic policy gradient (TD3)[9] since
it can mitigate the value overestimation problem. To address the
challenge of sparse close-to-optimal configurations of a big data
framework, we design a reward-driven PER mechanism named RD-
PER in DeepCAT. The core insight is that for online configuration
auto-tuning, we should pay more attention directly to the valuable
high-reward experiences rather than high TD (temporal difference)-
error transitions like PER did. With the aid of two memory pools,
RDPER is able to guarantee the proportion of high-reward tran-
sitions in the total replayed samples so that DeepCAT can fully
utilize these valuable experiences. 2) Twin-Q Optimizer. In order
to reduce the total time consumed during the online tuning steps,
we also propose a Twin-Q Optimizer algorithm in DeepCAT. Dif-
ferent from all prior DRL-based approaches, we construct a novel
indicator based on the twin critic networks in TD3 to recognize the
sub-optimal actions and avoid the corresponding costly configu-
ration evaluation. These identified sub-optimal actions then will
be optimized with a Gaussian noise and finally achieve a low-cost
exploration-exploitation trade off for online tuning.

To evaluate the effectiveness and efficiency of DeepCAT when
applied into online configuration auto-tuning for big data frame-
works, we conduct extensive experiments on a local 3-node Spark
cluster with 12 different workload-input pairs from HiBench. Ex-
perimental results show that DeepCAT is able to speed up the best
execution time by a factor of 1.45× and 1.65× on average respec-
tively over CDBTune and OtterTune, while consuming 24.64% and
39.71% on average and up to 50.08% and 53.39% less total tuning
time. In addition, DeepCAT also has a good adaptability to the
time-varying environment of big data frameworks.

2 SYSTEM OVERVIEW
We propose a DRL-based approach named DeepCAT to achieve cost-
efficient online configuration auto-tuning for big data frameworks.
Figure 1 shows the architecture of DeepCAT, which is composed
of an offline training stage and an online tuning stage. The offline
training stage is responsible for training a DRL model based on
the interactions with the standard environment. When an online
configuration tuning request is arrived, the online tuning stage is
responsible for fine-tuning the offline model via a certain number
of online tuning steps to recommend a satisfying configuration for
users. We briefly introduce each stage here and the details can be
found in Section 3.

Offline Training Stage. In order to train an effective DRL model
for online tuning, DeepCAT chooses to use the TD3 algorithm[9]
to address the value overestimation problem of DDPG[19]. For big
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Figure 1: System architecture of DeepCAT

data applications, close-to-optimal configurations are far fewer than
sub-optimal ones. Therefore, DeepCAT utilizes a reward-driven
prioritized experience relay mechanism named RDPER to take ad-
vantages of the sparse high-reward transitions. RDPER divides the
original samples separately into a high-reward and low-reward
memory pool and guarantees the ratio of high-reward transitions
to the total replayed batch samples. Note that the DRL model is
only offline trained once and then can be used to online auto-tune
configurations for various online tuning requests from users.

Online Tuning Stage. When a new configuration tuning request
is arrived, the online tuning stage will start to fine-tuning the offline
DRL model for the real user environment (workload, hardware)
within the specified tuning cost constraint. For each step, DeepCAT
use the actor network in TD3 to output an action according to
current system state. In order to reduce the tuning cost, DeepCAT
utilize the Twin-Q Optimizer to estimate the real execution time
of this recommended configuration and optimize the sub-optimal
ones. After that, the optimized configuration will be evaluated on
the target big data cluster to obtain the corresponding performance.
When the number of tuning steps reaches the constraint or the
total tuning time exceeds the budget, DeepCAT will terminate and
report the best configuration ever found to users.

3 DESIGN AND IMPLEMENTATION OF
DEEPCAT

3.1 DRL Formulation
In order to achieve cost-efficient online configuration auto-tuning
for big data frameworks, we proposed DeepCAT based on deep
reinforcement learning. For the first step, we translate the configu-
ration auto-tuning problem into a DRL formulation. Considering
the limit of space, here we present three core components in DRL:

State: State st is an internal indicator of the target environment,
which refers to the current environment status. For a big data
cluster, once DeepCAT recommends a configuration and begins to

evaluate it, we choose to use the uptime command to obtain the
load averages of each server to represent the current state.

Action: Different from DQN[21], we try to learn deterministic
policies where each action at can directly represent the config-
uration of candidate parameters. To auto-tune parameters from
the big data framework, DeepCAT performs corresponding actions
under current states according to the latest policy. Noting that each
dimension in at is normalized to [0,1] to tackle with the different
categories (numerical, categorical, etc.) as well as various value
scales of different parameters.

Immediate Reward: Reward directs the agent to learn and thus
is vital in DRL. Since we aim to improve the performance of a big
data framework, the reward rt should be determined based on the
performance per ft after an action at is executed. In this work, we
design an effective immediate reward function to guide the agent
to find a desired good configuration:

rt =
per fe − per ft

per fe
(1)

where per fe is the expected performance of the target system. Ac-
cording to the performance improvement achieved by prior studies,
we set per fe to be a speedup with respect to the default execution
time. It is worth noting that for configuration auto-tuning problem,
the agent is able to conduct configuration evaluation to receive a
feedback for each action with this reward function. These immedi-
ate rewards can speed up the convergence rate of offline training.
Besides, compared with prior studies[10, 18, 30] which target on
an eventual optimal performance, our immediate reward mecha-
nism is consistent with the tuning goal and can drive the agent to
pursue maximizing the performance for every single action, which
is helpful to reduce the total time consumption of online tuning
steps.

3.2 DRL for tuning
Since there are a considerable number of configuration parame-
ters from a big data pipeline, finding the optimal configuration in
this high-dimensional continuous candidate space is NP-hard[30].
Therefore, we give a short introduction of DDPG and TD3 algo-
rithm and explain their limitations in achieving cost-efficient online
configuration auto-tuning.
Deep Deterministic Policy Gradient[19]: DDPG is a policy-
based DRL algorithm which is able to perform well in the high-
dimensional continuous action space. It combines the Actor-Critic
method with the successful experience of DQN and the execution
process is as following:
(1) Actor selects an action and critic calculates the corresponding
Q-value of this action as a feedback, where the Q functionQµ (s,a)
is defined by Bellman Equation[27]:

Qµ (s,a) = Ert ,st+1
[
r (st ,at ) + γQ

µ (st+1, µ (st+1))
]

(2)

where µ is policy, st+1 is the next state, r (st ,at ) is the reward func-
tion and γ is a discount factor denotes the correlation between
future and present rewards.
(2) Temporary difference (TD) algorithm is used to train the critic
network, parameters are updated with gradient descent to minimize
the loss function L

(
θQ

)
:
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L
(
θQ

)
= E

[(
Q
(
s,a | θQ

)
− y

)2]
(3)

where
y = r (st ,at ) + γQ

µ
(
st+1, µ (st+1) | θ

Q
)

(3) According to the feedback of critic, actor updates the policy with
the policy gradient:

▽θ µ J ≈ E
[
▽aQ

(
s,a | θQ

)
|s=st ,a=µ(st ) ▽θ µ µ

(
s | θ µ

)
|s=st

]
(4)

DDPG extends DQN to a high-dimensional continuous space, and
has been recently applied to auto-tune configuration parameters for
databases. However, the learned value function may significantly
overestimate the Q-value, which leads to a poor trained policy
network. As a result, the agent will fail to recommend good actions
and lead to time-consuming configuration evaluation during the
online tuning stage.
Twin Delayed Deep Deterministic Policy Gradient[9] : TD3 algo-
rithm aims to address the value overestimation problem of DDPG.
To this end, TD3 adopts two critic networks and updates them sep-
arately. To offset the overestimation in the Q function, the smaller
output of two critics will be selected to estimate the target Q-value:

yi = r (st ,at ) + γ min
i=1,2

Q
µ
i

(
st+1, µ (st+1) | θ

Qi
)

Each critic network is independently updated similar to DDPG:

minL
(
θQ1

)
= E

[(
Q1

(
s,a | θQ1

)
− y1

)2]
minL

(
θQ2

)
= E

[(
Q2

(
s,a | θQ2

)
− y2

)2]
In addition, TD3 also performs target policy smoothing as well

as delaying policy update to provide a more stable training pro-
cess than DDPG. Hence, we choose to utilize TD3 to implement
DeepCAT. Unfortunately, the sparse high-reward transitions and
the time-consuming online tuning steps needed to adapt to the real
user environment still prevent DeepCAT from achieving a cost-
efficient online configuration auto-tuning for big data frameworks.

3.3 RDPER: Reward-driven Prioritized
Experience Replay

Figure 2 illustrates the cumulative probability distribution of 200
random generated configurations for TeraSort according to their rel-
ative performance to the found optimal configuration. We can find
that although it is easy to find a better-than-default configuration,
the close-to-optimal configurations are far fewer than sub-optimal
ones and scattered throughout the high-dimensional configuration
space. In order to take fully advantages of the valuable but sparse
positive rewards when auto-tuning configuration for a big data
pipeline, a straightforward method is to replay corresponding tran-
sitions according to a certain policy. Since conventional experience
replay mechanism utilized by the off-policy RL sample transitions
from the memory pool in a totally random way, it fails to recog-
nize the important transitions. Therefore, prioritized experience
replay (PER)[25] is currently widely used to enhance DRL in sce-
narios with sparse rewards. Specifically, PER utilizes the temporal
difference (TD) error to represent the priority of each transition

Figure 2: The CDF of 200 random generated configurations.

and replays the high-priority transitions to gain more environment
information.

However, the objective of online configuration auto-tuning is to
find the best configuration in a short time, trying to collect enough
information from environment like PER is infeasible and unnec-
essary. Therefore, instead of the transitions with a high TD error,
we should pay more attention to the sparse high-performance ac-
tions. In fact, according to Eq. (4), the policy improvement can
be decomposed into the gradient of the Q with respect to actions
and the gradient of the actions with respect to the policy param-
eters based on the chain rule. Therefore, transitions with a larger
estimated Q-value can obtain greater policy update information.
Since high-reward transitions obtain a larger estimated Q-value
according to Eq. (2), it is believed that replaying these transitions
more frequently will speed up the convergence rate of policy net-
work training and do good to policy improvement. To this end, we
design a reward-driven prioritized experience replay mechanism
named RDPER for DeepCAT. The core insight of RDPER is that
we divided the transitions into two categories ([high reward, low
reward]) according to the relationship of size between their rewards
and a pre-specified threshold Rth . Specifically, DeepCAT utilizes
two memory pools denoted as Phiдh and Plow to separately store
these transitions so as to guarantee the ratio of high-reward tran-
sitions to replayed transition samples. When the learning process
starts, transitions with an equal or higher reward than Rth will be
stored in Phiдh and others will be stored in Plow . If we denote the
batch size asm and the ratio of high-reward transitions as β , βm
transitions will be sampled from Phiдh and (1 − β)m transitions
from Plow to train the networks once DeepCAT obtains enough
transitions. How to determine the value of hyper-parameter β will
be discussed in Section 5.4.1.

Through this reward-driven PERmechanism, DeepCAT is able to
make a good use of the valuable but sparse high-reward experiences
and thus speed up the convergence rate of offline training as well
as improve configuration performance. The effectiveness of this
mechanism for training TD3 in DeepCAT will also be evaluated in
Section 5.1.1.
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Figure 3: The trends of Q-values from twin critic networks
of TD3 and the real reward.

3.4 Twin-Q Optimizer
When a configuration auto-tuning request is arrived, DeepCAT
need to fine-tune the offline trained model to adapt to the real
user environment. This process usually costs several online tuning
steps before it can recommend a satisfying configuration for users.
Unfortunately, even with the improvements described above, fine-
tuning will still have to evaluate the time-consuming sub-optimal
configurations when the offline trained model is utilized in a new
scenario, resulting in an non-ignorable total online tuning cost.

To address this problem, we propose the Twin-Q Optimizer algo-
rithm in DeepCAT. The major idea of this algorithm is to estimate
the real execution time of each online recommended action and
replace the sub-optimal configurations with estimated promising
ones inherit from themselves. Since conventional DRL totally ne-
glects the cost of each online tuning step, it is challenging for our
algorithm to obtain an estimation of current actions. However, for
the configuration auto-tuning problem, we find that the Q-value of
an action is a good indicator to its cost. In fact, RL utilizes a value
function to estimate the quality of current situation based on the
expected future rewards. If we useUt to denote the total discounted
reward and Q (st ,at ) to denote the value function, we can obtain
that:

Ut = Rt + γRt+1 + γ
2Rt+2 + γ

3Rt+3 + · · · (5)

Q (st ,at ) = E [Ut | St = st ,At = at ] (6)

As a result, we can use the output of the offline trained critic network
to identify whether the current recommended action is sub-optimal.
It is worth noting that prior DRL-based approaches totally discarded
the utilization of the already trained critic network during their
online tuning phase. In order to further improve the accuracy of
configuration evaluation, we take the advantage of the twin critic
networks in TD3 and use the smaller of the Q-values as the evalua-
tion metric, which is inspired by the parameter update method of
TD3. Figure 3 shows the smaller of the twin-Q indeed share a very
similar trend with the real reward during the offline training stage.
Experimental results in Section 5.1.2 verify the effectiveness of this
Twin-Q indicator mechanism for online tuning.

For the identified sub-optimal configurations, we add a Gaussian
noise ϵ ∼ N (0,σ 2

ϵ ) to the original action and evaluate the newly
generated action with above Twin-Q indicator mechanism. This
exploration process will repeat until an close-to-optimal action is
recommended. Note that since no actions are actually executed
during this optimization procedure, this method is able to avoid
the time-consuming execution of sub-optimal actions with only
a slight cost. Therefore, the total time consumption of the whole
fine-tuning phase can be obviously reduced.

Algorithm 1: Twin-Q Optimizer
Input:

state s , action a, Q-value threshold Qth
Output:

an optimized action a*
1: while do
2: q1 = Critic1(s,a) , q2 = Critic2(s,a)
3: if min(q1,q2) ≥ Qth then
4: a∗ = a
5: break
6: else
7: modify action a with Gaussian noise ϵ : a = a + ϵ
8: end if
9: end while

Combing the above identification and replacement mechanisms
together, we finally propose the Twin-Q Optimizer algorithm in
DeepCAT. As described in Algorithm 1, for each recommended ac-
tion a during the online tuning stage, we respectively utilize the two
critic networks to obtain its Q-values q1 and q2 (line 2). Then we
compare the smaller one with a pre-defined Q-value threshold Qth
to determine whether action a is sub-optimal. For the sub-optimal
actions, we add a Gaussian noise ϵ to generate a new action and
repeat this operation until the newly generated action is identified
as close-to-optimal (line 3-8). It is worth noting that a largerQth in-
creases the exploration around the sub-optimal space, while a lower
Qth tends to exploit the good configuration has been already found.
How to determine it to achieve a low-cost exploration-exploitation
trade off will be discussed in Section 5.4.2.

3.5 Advantages
Our method has the following advantages in online configuration
auto-tuning for big data frameworks: 1)High-dimensional con-
figuration recommendation. The deep neural networks in TD3
have a much better representation ability to learn the high dimen-
sional configuration space than ML models and avoid the value
overestimation problem of DDPG. 2)Supporting scenarios with
sparse high-reward transitions. With the RDPER mechanism,
DeepCAT makes a fully use of the rare high-reward transitions
and speeds up the convergence rate of offline training as well as
improves configuration performance. 3)Less total online tuning
cost. With the Twin-Q Optimizer, DeepCAT is able to estimate
the real execution time of each online recommended action and
optimize the sub-optimal ones to achieve a low-cost exploration-
exploitation trade off. 4)Good Adaptability. Unlike traditional ML
methods which highly rely on the training data, DRL learns a policy
to output a good configuration according to system state and thus
has a good adaptability to the new environment. The RDPER and
Twin-Q Optimizer techniques also help guarantee the effectiveness
and efficiency when environment changes.

4 EXPERIMENTAL SETUPS
4.1 Experimental Platform
In our experiments, we use DeepCAT to online auto-tune configu-
rations for a big data pipeline composed of HDFS, Yarn and Spark.
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Table 1: Workload characteristics
Workload Category Input Datasets (D1, D2, D3)

WordCount (WC) micro 3.2, 10, 20 (GB)
TeraSort (TS) micro 3.2, 6, 10 (GB)
PageRank (PR) websearch 0.5, 1, 1.6 (Million Pages)
KMeans (KM) ML 20, 30, 40 (Million Points)
Table 2: Number of tuned parameters in the pipeline
Component of the pipeline Number of parameters

Spark 20*
YARN 7
HDFS 5

*Including the Spark-YARN connector parameters

Our experimental platform is a local 3-node Spark cluster. All the
servers are connected with a 1-Gigabit Ethernet network and each
server is equipped with one Intel(R) Core(TM) i7-10700 2.9GHz
with 16 physical cores, 16 GB DDR4 memory and 1TB HDD. The
version of the frameworks is Apache Spark 2.2.2 and Hadoop 2.7.3,
while the underlying execution environment is OpenJDK 1.8.0 and
Ubuntu 18.04 with kernel version 5.4.0.

4.2 Benchmark
HiBench[15] is used in our experiments to collect performance
metrics of the local Spark cluster under different configurations. Hi-
Bench is a big data benchmark suite that helps evaluate different big
data frameworks such Hadoop, Spark and Flink. Specifically, after
the execution of each application, HiBench will report the corre-
sponding performance metrics such as execution time, throughput,
etc. As listed in Table 1, we select four different Spark applications
each with three different input datasets from HiBench in order to
evaluate the effectiveness of DeepCAT under different workload
characteristics.

4.3 Configuration Parameters
According to the official configuration guides as well as the empiri-
cal information extracted from our practical experiments, we finally
select in total 32 configuration parameters that significantly influ-
ence performance. As shown in Table 2, there are 20 parameters
from Spark, 7 parameters from YARN and 5 parameters from HDFS.
For a Spark cluster, parameters of YARN are closely related to re-
source scheduling while HDFS parameters have a great influence
on data read/write performance. Therefore, we should take these
parameters into consideration in addition to Spark parameters to
further improve the performance of a Spark application.

4.4 Baseline Algorithm
To evaluate the performance of DeepCAT when applied to online
auto-tune configurations for big data frameworks, we compare
it with two currently proposed online configuration auto-tuning
approaches: a machine learning-based approach OtterTune and
a DRL-based approach CDBTune. We omit the comparison with
search-based approaches since they usually need a large number of
time-consuming configuration evaluation and restart from scratch
whenever a new tuning request comes.

OtterTune[26] is an online auto-tuning system that uses tradi-
tional machine learning models pipeline. It uses Gaussian process

as its surrogate and Expected Improvement as its acquisition func-
tion. It recommends configuration through workload mapping to
select similar workload data for modeling. We implement it through
Python and the scikit-learn toolkit.

CDBTune[30] is the state-of-the-art work among DRL-based
configuration auto-tuning systems, it uses DDPG as tuning agent
to input internal metrics of the system and outputs proper configu-
rations. We use the PyTorch library[23] to build neural networks
to implement DDPG in CDBTune.

For fair comparison, we spend 3-4 days to generate enough
samples and train the DRLs offline until they converged. Besides,
we also feed thousands of offline samples to OtterTune to guarantee
the quality of its machine learning model. In all experiments, we
also set the number of total online tuning steps to be 5 according
to CDBTune. After the online auto-tuning terminates, we record
the best configurations ever found by DeepCAT, CDBTune and
OtterTune and calculate the total time consumption during the 5
online tuning steps.

5 EXPERIMENTAL RESULTS AND ANALYSIS
5.1 Evaluation on Our Techniques
5.1.1 Effectiveness ofRDPER. In order to fully utilizes the sparse
but valuable close-to-optimal configurations in the high dimen-
sional configuration space, we design a reward-driven prioritized
experience replay mechanism for DeepCAT. To evaluate the effec-
tiveness of RDPER, we first offline train TD3 separately with the
conventional experience replay and RDPER on the same samples,
and then execute 5 online tuning steps based on these two offline
models. Figure 4 shows the execution time of TeraSort with D1
input dataset under the best configuration recommended online by
each approach under different offline training iterations.

We can find that compared to TD3, the TD3 with RDPER ap-
proach is able to converge faster by a factor of 1.60 (2000 v.s. 3200)
and recommend a much better configuration with 12.11% less ex-
ecution time (37.0s v.s. 42.1s). More importantly, with only 800
iterations, it can find a configuration extremely close to the best
configuration recommended by the TD3 approach with 3600 itera-
tions. Therefore, through the RDPER mechanism, DeepCAT is able
to take fully advantages of the sparse high-reward transitions and
thus speeds up the offline training as well as improves configuration
performance recommended during the online tuning phase.

Figure 4: Execution time of the best configurations recom-
mended by conventional TD3 and TD3 with RDPER under
different offline training iterations.
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Figure 5: Execution time of configurations recommended by
each online tuning step of DeepCAT and DeepCAT without
the Twin-Q Optimizer.

5.1.2 Effectiveness of Twin-Q Optimizer. In order to reduce
the total time consumption during the online tuning phase, Twin-Q
Optimizer is utilized in DeepCAT to estimate the real execution time
of a recommended configuration and optimize the sub-optimal ones.
To evaluate its effectiveness, in this experiment, we run DeepCAT
with and without the Twin-Q Optimizer to perform 5 sequential
online tuning steps based on the same offline training model. Fig-
ure 5 shows the execution time of TeraSort with D1 under each
configuration recommended during the online tuning phase.

As shown in the figure, with the Twin-Q Optimizer, DeepCAT is
able to reduce the total time consumption of 5 online tuning steps
by 19.29% (from 253.5 s to 204.6s) and find a better configuration
with 7.29% less execution time. This significant improvement comes
from the ability of Twin-Q Optimizer to estimate and optimize each
online recommended action before real execution. For example, the
original actions output by the latter four steps are all estimated
as sub-optimal configurations in our experiments since they only
gain modest Q-values from the twin critic networks. After that, our
Twin-Q Optimizer modifies these original actions with a Gaussian
noise until an estimated sub-optimal configuration is generated. As
a result, the execution time under each step is reduced by 4.5s, 8.0s,
22.4s and 14.0s, respectively. Therefore, Twin-Q Optimizer is indeed
able to help DeepCAT achieve a cost-efficient online configuration
auto-tuning.

5.2 Comparison With Prior Approaches
5.2.1 Performance Speedup. In order to evaluate the effective-
ness of DeepCAT for configuration auto-tuning, we compare the
overall performance speedup over default configuration achieved
by DeepCAT with CDBTune and OtterTune. As illustrated in Figure
6, these three approaches are all able to gain a great performance
improvement for the 12 workload-input pairs over the default con-
figuration. On average, DeepCAT, CDBTune and OtterTune is able
to speed up the default performance by a factor of 4.66×, 3.21× and
2.82×, respectively. That is to say, with the same online tuning steps,
the average speedups of DeepCAT over CDBTune and OtterTune
are 1.45× and 1.65×. On the one hand, the GP regression model in
OtterTune is too simple to capture the complex information neces-
sary for the configuration auto-tuning problem, especially under
the application scenarios without an obvious workload characteris-
tics. On the other hand, based on DDPG, CDBTune works better
than Ottertune in this high-dimensional configuration auto-tuning
scenario. However, transitions with a high-performance configura-
tion is quite rare and as a result, the prioritized experience replay

mechanism based on TD error utilized in CDBTune still cannot
achieve the efficient utilization of these sparse but valuable histor-
ical experiences. Different from CDBTune, DeepCAT trains TD3
with a reward-driven prioritized experience replay mechanism. It
is able to address the value overestimation problem of DDPG and
take fully advantages of the sparse but valuable transitions. Besides,
the novel Twin-Q Optimizer can help DeepCAT estimate the real
execution time of each recommended configuration during the on-
line tuning phase and optimize the sub-optimal ones, which further
improves the configuration performance.

It is worth noting that for the KMeans benchmark application,
the average and maximized execution time speedup achieved by
DeepCAT are respectively by a factor of 1.77× and 2.04× over
CDBTune, and 1.98× and 2.17× over OtterTune. Specifically, as a
machine learningworkload, the KMeans application requires a large
amount of memory to save the intermediate results of calculation
and not enough memory may lead to OOM errors. As a result,
high-reward transitions become more sparse, which magnifies the
drawbacks of the DDGP-based approach CDBTune. In contrast,
with the RDPER and Twin-Q Optimizer techniques, DeepCAT is
still able to recommend an attractive configuration under the same
constraint of total online tuning steps.

5.2.2 Online Tuning Cost. Considering the dynamic workload
characteristics and hardware environment of a big data system,
the time consumption consumed by the configuration auto-tuning
approaches during the online tuning phase is also an vital indicator.
Herewe define the time consumption is the sum of the configuration
evaluation time and the recommendation time. Figure 7 shows the
total online tuning cost of each approach for the 12 workload-input
pairs as well as the time breakdown. Specifically, the total time con-
sumed during the online tuning phase by DeepCAT is reduced by
24.64% on average and up to 50.08% compared with CDBTune, while
39.71% on average and up to 53.39% compared with OtterTune. This
non-trivial improvement is because that different from CDBTune
and OtterTune, the Twin-Q Optimizer in DeepCAT is able to esti-
mate the execution time of each recommended action with no need
for the costly real execution and optimize the original sub-optimal
actions. Considering the performance speedup achieved by Deep-
CAT as described in the previous subsection, DeepCAT is indeed
able to achieve a cost-efficient online configuration auto-tuning for
big data frameworks.

Next, we will give a short discussion about the time consumed
on configuration recommendation of each approach during the
5 online steps. The recommendation time of DeepCAT and CDB-
Tune is respectively 0.69s and 0.25s, which is almost negligible for
the tens-of-minutes long total online tuning time. For DRL-based
approaches, obtain the output of the actor and critic networks to rec-
ommend an action is relatively cheap, even considering the Twin-Q
Optimizer utilized in DeepCAT. On the contrary, once a config-
uration tuning request is arrived, OtterTune needs to perform a
time-consuming GP model training first according to the workload
characteristics and then starts the configuration recommendation.
The total recommendation time during the whole online tuning
phase thus reach a noticeable 43.25 seconds.

5.2.3 Effectiveness under Tuning Cost Constraint. For real
online configuration auto-tuning applications, there is usually a
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Figure 6: Speedup of best configurations recommended by different approaches over the default configuration (higher is better).
Input datasets (D1, D2, D3) for each workload is corresponding with the description in Table 1.

Figure 7: Comparison of the total online tuning time consumed by different approaches (lower is better). We mark the recom-
mendation time of each approach black.

Figure 8: The execution time of current best configuration and the corresponding accumulated tuning cost along with the 5
online tuning steps of DeepCAT, CDBTune, OtterTune.

user-specified constraint on the total online tuning time consump-
tion. Therefore, in this subsection, we discuss the the effectiveness
of DeepCAT under an online tuning cost constraint. Figure 8 illus-
trates the accumulated tuning cost along with the 5 online tuning
steps and the corresponding performance of current best configu-
ration found by DeepCAT, CDBTune and OtterTune. Significantly,
compared with CDBTune and OtterTune, DeepCAT is able to find a
better configuration with much less accumulated tuning time for all
the workloads. In fact, with the Twin-Q Optimizer, most of the rec-
ommended actions by DeepCAT have an excellent execution time
and thus DeepCAT can orchestrate a stable online tuning phase. As
a result, it is reasonable to believe that under the same constraint of
total online tuning time, DeepCAT is able to perform more tuning
steps and thus recommend a better configuration.

5.3 Evaluation on Adaptability
5.3.1 Varying Different Workloads. In practice, the workload
characteristics of a big data system is usually time-varying and it is
infeasible to offline train different model for each workload. There-
fore, in this experiment, we evaluate the the ability of DeepCAT to
adapt to different workloads. To this end, we use DeepCAT, Otter-
Tune and CDBTune to respectively perform online configuration
auto-tuing for PageRank based on the models offline trained under
different workloads. Figure 9 shows the execution time of PageRank
with D1 input dataset under the best configuration recommended
online and the total online tuning cost. It is worth noting that we
utilizeM_TS → PR to indicate applying the model trained on TS
workload to online tuning PR.
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Figure 9: Performance adapting to different workloads.

Figure 10: Performance adapting to different hardware envi-
ronments.

First of all, DeepCAT trained on other workloads can still recom-
mend a satisfying configuration with only 11.22% to 19.44% more
execution time compared with the best configuration found by
DeepCAT directly trained on PageRank (the blue bar). Besides, it is
worth noting that DeepCAT trained on other workloads all outper-
form CDBTune and OtterTune, even they are specifically trained
for PageRank. In detail, these four DeepCAT models achieve an
average 15.86% and 27.21% performance improvement than CDB-
Tune and OtterTune, while reducing the total online tuning cost by
21.67% and 24.02% on average and up to 30.95% and 36.03%, respec-
tively. The reason is that DeepCAT is able to learn a better policy
network through TD3 and the RDPER mechanism for the original
environment. When this offline model is utilized during the online
tuning stage for another workload, the good adaptability of DRL as
well as the Twin-Q Optimizer in DeepCAT together guarantee the
performance of recommended configurations. Experimental results
indicate that DeepCAT indeed has a good adaptability when the
workload changes, which is common for big data frameworks.

Second,M_TS → PR (the red bar) performs worst among all the
DeepCAT models. In fact, the TeraSort application is a CPU and
memory-intensive workload based on map and reduce processes,
which presents the most different workload characteristics from
PageRank based on iterative selections. Even so, we can still find
that DeepCAT successfully recommend a better configuration with
much fewer total online tuning time compared with CDBTune and
OtterTune.

5.3.2 VaryingDifferentHardware Environments. In addition
to workload characteristics, the hardware environment of a big data
system is also time-varying. In order to evaluate the adaptability
of DeepCAT to different hardware environment, we created a VM-
based Spark cluster which also contains three nodes, with a total
of 24 CPU cores, 24G memory and 150G disk. We denote this new
environment as Cluster-B and the former environment described
in Section 4.1 as Cluster-A. After that, DeepCAT, CDBTune and

Figure 11: The performance of DeepCAT under different β
settings.

Figure 12: The performance of DeepCATunder differentQth
settings.

OtterTune are trained on cluster-A and then perform online config-
uration auto-tuning for WordCount and PageRank with D1 input
datasets on cluster-B. Note that if the recommended configuration
parameters are outside the scope of the new environment, we need
to clip it to the boundary to avoid unnecessary waste of resources.
As shown in Figure 10, DeepCAT performs best among all these
online configuration auto-tuning methods. For the WordCount ap-
plication, the speedup of execution time over default achieved by
DeepCAT, CDBTune and OtterTune are respectively by a factor
of 1.68×, 1.30× and 1.17×. While for the PageRank application,
the speedup ratios are 1.42×,1.25× and 1.09×. In the meanwhile,
DeepCAT consumes the less total online tuning cost. These results
verify that DeepCAT also has a strong adaptability to the hardware
environment.

5.4 Hyper-Parameters in DeepCAT
5.4.1 High-reward transition ratio (β). The quality of offline
training has a great impact on both the effectiveness and efficiency
of an online configuration auto-tuning approach. In order to im-
prove the learned policy network in the sparse positive reward
scenario, DeepCAT utilizes RDPER mechanism in the offline train-
ing stage. Since β controls the ratio of high-reward transitions in
the total replayed batch samples for TD3 training, here we discuss
how to determine it in our experiments. We set the value of β from
0.1 to 0.9 and increase by 0.1 each time and finally we train 9 of-
fline models for online tuning TeraSort with D1 dataset. Figure 11
shows the relationship between β and best execution time achieved
by DeepCAT during the online tuning stage. We can find that no
matter the ratio β is too high or too low, DeepCATwill fail to recom-
mend a close-to-optimal configuration in a short time. The reason
is that training network with a batch of all-good or all-bad data
may both lead to model over-fitting. On the other hand, DeepCAT
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performs relatively better when the value of β is between 0.4 to 0.7.
Considering both the best configuration and the total online total
cost, we finally set β to be 0.6 in our experiments.

5.4.2 Q-value threshold (Qth ). The hyper-parameter is used to
identify sub-optimal actions in the Twin-Q Optimizer, which is vital
to reduce the total online tuning cost. A larger Qth will increase
the exploration around the sub-optimal space, while a smaller Qth
tends to exploit the good configuration has been already found.
In this experiment, the value range of Qth is set according to the
approximate reward of the target configuration performance. As
shown in Figure 12, although Qth = 0.5 is able to recommend the
best configuration, its total online tuning cost is the largest in the
meanwhile. This is because a larger Q-value threshold will drive
more risky explorations during the online tuning stage, which is
a double-edged sword. Therefore, we set Qth = 0.3 in our experi-
ments because it consumes the least total time and can recommend
a close-to-optimal configuration with only a slight 2.54 seconds
more execution time compared with Qth = 0.5.

6 RELATEDWORK
In the past few years, there are already some literatures focusing on
configuration auto-tuning for different software systems. Broadly
speaking, prior studies can be mainly divided into three categories:
search-based, machine learning-based and reinforcement learning-
based.

(1) Search-based methods explore the configuration space ac-
cording to specific rules and run on the same workload with differ-
ent configuration settings until they find satisfying results. BestCon-
fig [32] utilizes a divide-and-diverge sampling method as well as a
recursive bound-and-search algorithm to automatically tune sys-
tem configurations within a resource limit. However, these random-
based methods are not able to make full use of the valuable infor-
mation from historical observation sets. Due to the effectiveness
in solving black-box optimization problem, Bayesian Optimization
(BO) is widely utilized to address the configuration auto-tuning
problem[1, 7, 8, 16, 17]. Although they are simple to run and do not
require much knowledge of the system, they still require a high
number of the time-consuming configuration evaluation and thus
are not suitable for online configuration auto-tuning. To reduce
the tuning cost, Lynceus[6] uses a long-sighted and budget-aware
technique to determine which configurations to test by predicting
the long-term impact of each exploration search space and early
stops the execution of a job on sub-optimal configurations. How-
ever, the model is not accurate in the early stage due to the lack
of historical data, which will lead to misjudging the best config-
uration. Hence, it may not be effective until dozens of iterations.
Furthermore, ResTune[31] leverages the tuning experience from
the history tasks and transfers the accumulated knowledge to accel-
erate the tuning process of the new tasks. But it does not consider
the evaluation cost of sub-optimal configurations. With the Twin-Q
Optimizer, DeepCAT is able to identify sub-optimal configurations
and optimize them to reduce the total online tuning cost.

(2) Learning-basedmethods utilize the machine learning tech-
niques to tune configurations. For example, OtterTune[26] with
Lasso-based knob selection and map unseen database workloads

to previous workloads and recommend configuration by a tradi-
tional machine learning model. Other methods [3, 4, 11, 29] also
rely on machine learning algorithms to train a performance predic-
tion model and then find the optimal configuration using a search
method such as genetic algorithm. Although these studies is able
to employ performance models to avoid real configuration evalua-
tion during online tuning phase, they seriously rely on large-scale
high-quality training samples and have a poor adaptability to envi-
ronment changes. In contrast, DeepCAT can fully utilize the sparse
but valuable transitions and have a good adaptability to the time-
varing workload and hardware.

(3) Reinforcement learning-based methods treat configura-
tions tuning as a trial-and-error process based on a reward signal
and learn from the interactions with the environment. Hence many
RL algorithms have been successfully utilized in system configu-
ration auto-tuning[5, 12, 22]. CDBTune[30] is the first to utilize a
DRL model to recommend configurations. Insprided by CDBTune,
Qtune[18] uses a double-state DDPG and can provide better fine-
grained tuning. Specifically, it uses a neural network to predict
the change value ∆S of the state after processing a query in the
database. However, if the prediction of ∆S is slightly biased, the
cumulative error will be thousands of miles away. On the other
hand, WATuning[10] designs an attention-based DDPG that con-
sider the impact of different workloads on the state of the system. It
also designs a multi-instance mechanism that classifies workloads
in a fine-grained manner. However, it requires a large amount of
training datasets and it may not work well on tuning complex and
diverse workloads in big data systems. In contrast, DeepCAT utilizes
the TD3 algorithm instead of DDPG to alleviate value overestima-
tion. More importantly, DeepCAT utilizes a novel reward-driven
prioritized experience replay mechanism to fully utilize the rare but
valuable experiences and a Twin-Q Optimizer algorithm to achieve
a low-cost exploration-exploitation trade off.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a cost-efficient online configuration auto-
tuning approach named DeepCAT for big data frameworks. To
reduce the total online tuning cost, DeepCAT: 1) utilizes the TD3
algorithm instead of DDPG to alleviate value overestimation; 2)
designs a novel reward-driven PER mechanism to fully utilize the
rare but valuable experiences; 3) proposes a Twin-Q Optimizer
to estimate the execution time of each action without the costly
configuration evaluation and optimize the sub-optimal ones to
achieve a low-cost exploration-exploitation trade off. Experimental
results based on a local Spark cluster and HiBench benchmark
applications show the effectiveness and efficiency of DeepCAT
compared with CDBTune and OtterTune.

Recently, LOCAT[28] and LITE[20] are proposed to reduce the
tuning cost through white-box analysis of the target application.
We also acknowledge the function of software analysis for cost-
efficient configuration tuning and these inspiring works are able
to further enhance our approach. How to utilize software analysis
methods to further reduce the online tuning cost is one of our future
work.
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